SECTION 1 GENERAL | TABLE OF CONTENTS | Page | |--|--------| | Three View - Normal Ground Attitude | 1-2 | | Introduction | 1-4 | | Descriptive Data | 1-4 | | Engine | 1-4 | | Propeller | 1-4 | | Fuel | 1-4 | | Oil , | 1-5 | | Maximum Certificated Weights | 1-6 | | Standard Airplane Weights | 1-7 | | Cabin And Entry Dimensions | 1-7 | | Baggage Space and Entry Dimensions | 1-7 | | Specific Loadings | 1-7 | | Symbols, Abbreviations and Terminology | 1-8 | | General Airspeed Terminology And Symbols | 1-8 | | Meteorological Terminology | 1-9 | | Engine Power Terminology | 1-9 | | Airplane Performance And Flight Planning Terminology | 1-10 | | Weight And Balance Terminology | 1-11 | | Metric / Imperial / U.S. Conversion Charts | 1-13 | | Weight Conversions | 1-14 | | Length Conversions | 1-16 | | Distance Conversions | 1-20 | | Volume Conversions | 1-21 | | Temperature Conversions | 1-24 | | Hectopascals to Inches Mercury Conversions | 1-25 | | Volume to Weight Conversions | 1-26 | | Quick Conversions 1-2 | 7/1-28 | 0510T1005 0510T1005 Figure 1-1. Three View - Normal Ground Attitude (Sheet 1 of 2) NOTE 1: WING SPAN SHOWN WITH STROBE LIGHTS INSTALLED. NOTE 2: WHEEL BASE LENGTH IS 65". **NOTE 3:** PROPELLER GROUND CLEARANCE IS 11 1/4". NOTE 4: WING AREA IS 174 SQUARE FEET. MINIMUM TURNING RADIUS (* PIVOT POINT TO NOTE 5: OUTBOARD WING TIP) IS 27'-5 1/2". NOTE 6: NORMAL GROUND ATTITUDE IS SHOWN WITH NOSE STRUT SHOWING APPROXIMATELY 2" OF STRUT, AND WINGS LEVEL. 0510T1005 #### INTRODUCTION ■ This handbook contains 9 sections, and includes the material required to be furnished to the pilot by FAR Part 23. It also contains supplemental data supplied by Cessna Aircraft Company. Section 1 provides basic data and information of general interest. It also contains definitions or explanations of symbols, abbreviations, and terminology commonly used. #### **DESCRIPTIVE DATA** #### **ENGINE** Number of Engines: 1. Engine Manufacturer: Textron Lycoming. Engine Model Number: IO-360-L2A. Engine Type: Normally aspirated, direct drive, air-cooled, horizontally opposed, fuel injected, four cylinder engine with 360 cu. in. displacement. Horsepower Rating and Engine Speed: 160 rated BHP at 2400 RPM. #### **PROPELLER** Propeller Manufacturer: McCauley Propeller Systems. Propeller Model Number: 1C235/LFA7570. Number of Blades: 2. Propeller Diameter: 75 inches. Propeller Type: Fixed pitch. #### **FUEL** #### **M** WARNING USE OF UNAPPROVED FUELS MAY RESULT IN DAMAGE TO THE ENGINE AND FUEL SYSTEM COMPONENTS, RESULTING IN POSSIBLE ENGINE FAILURE. Approved Fuel Grades (and Colors): 100LL Grade Aviation Fuel (Blue). 100 Grade Aviation Fuel (Green). #### NOTE Isopropyl alcohol or diethylene glycol monomethyl ether (DiEGME) may be added to the fuel supply. Additive concentrations shall not exceed 1% for isopropyl alcohol or 0.10% to 0.15% for DiEGME. Refer to Section 8 for additional information. #### Fuel Capacity: Total Capacity: 56.0 U.S. gallons. Total Usable: 53.0 U.S. gallons. Total Capacity Each Tank: 28.0 U.S. gallons. Total Usable Each Tank: 26.5 U.S. gallons. #### NOTE To ensure maximum fuel capacity and minimize cross-feeding when refueling, always park the airplane in a wings-level, normal ground attitude and place the fuel selector in the Left or Right position. Refer to Figure 1-1 for normal ground attitude dimensions. #### OIL Oil Specification: MİL-L-6082 or SAE J1966 Aviation Grade Straight Mineral Oil: Used when the airplane was delivered from the factory and should be used to replenish the supply during the first 25 hours. This oil should be drained and the filter changed after the first 25 hours of operation. Refill the engine with MIL-L-6082 or SAE J1966 Aviation Grade Straight Mineral Oil and continue to use until a total of 50 hours has accumulated or oil consumption has stabilized. MIL-L-22851 or SAE J1899 Aviation Grade Ashless Dispersant Oil: Oil conforming to the latest revision and/or supplements to Textron Lycoming Service Instruction No. 1014, **must be used** after first 50 hours or once oil consumption has stabilized. #### Recommended Viscosity for Temperature Range: | Temperature | MIL-L-6082
or
SAE J1966
Straight
Mineral Oil
SAE Grade | MIL-L-22851 or
SAE J1899
Ashless Dispersant
SAE Grade | |----------------------------|---|--| | Above 27°C (80°F) | 60 | 60 | | Above 16°C (60°F) | 50 | 40 or 50 | | -1°C (30°F) to 32°C (90°F) | 40 | 40 | | -18°C (0°F) to 21°C (70°F) | 30 | 30, 40 or 20W-40 | | Below -12°C (10°F) | 20 | 30 or 20W-30 | | -18°C (0°F) to 32°C (90°F) | 20W-50 | 20W-50 or 15W-50 | | All Temperatures | | 15W-50 or 20W-50 | #### NOTE When operating temperatures overlap, use the lighter grade of oil. Oil Capacity: Sump: 8 U.S. Quarts Total: 9 U.S. Quarts #### **MAXIMUM CERTIFICATED WEIGHTS** | Ramp Weight | Normal Category:
Utility Category: | 2457 lbs.
2107 lbs. | |----------------|---------------------------------------|------------------------| | Takeoff Weight | Normal Category:
Utility Category: | 2450 lbs.
2100 lbs. | | Landing Weight | Normal Category:
Utility Category: | 2450 lbs.
2100 lbs. | Weight in Baggage Compartment, Normal Category: Baggage Area 1 (Station 82 to 108): 120 lbs. See note below. Baggage Area 2 (Station 108 to 142): 50 lbs. See note below. #### NOTE The maximum combined weight capacity for Baggage Area 1 and Baggage Area 2 is 120 lbs. Weight in Baggage Compartment, Utility Category: In this category, the rear seat must not be occupied and the baggage compartment must be empty. #### STANDARD AIRPLANE WEIGHTS Standard Empty Weight: 1639 lbs. Maximum Useful Load, Normal Category: 818 lbs. Maximum Useful Load, Utility Category: 468 lbs. #### **CABIN AND ENTRY DIMENSIONS** Detailed dimensions of the cabin interior and entry door openings are illustrated in Section 6. #### BAGGAGE SPACE AND ENTRY DIMENSIONS Dimensions of the baggage area and baggage door opening are illustrated in detail in Section 6. #### SPECIFIC LOADINGS Wing Loading: 14.1 lbs./sq. ft. Power Loading: 15.3 lbs./hp. Revision 7 1-7 ## SYMBOLS, ABBREVIATIONS AND TERMINOLOGY GENERAL AIRSPEED TERMINOLOGY AND SYMBOLS | KCAS | Knots Calibrated Airspeed is indicated airspeed corrected for position and instrument error and expressed in knots. Knots calibrated airspeed is equal to KTAS in standard atmosphere at sea level. | |-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | KIAS | Knots Indicated Airspeed is the speed shown on the airspeed indicator and expressed in knots. | | KTAS | Knots True Airspeed is the airspeed expressed in knots relative to undisturbed air which is KCAS corrected for altitude and temperature. | | V _A | Maneuvering Speed is the maximum speed at which full or abrupt control movements may be used without overstressing the airframe. | | V _{FE} | Maximum Flap Extended Speed is the highest speed permissible with wing flaps in a prescribed extended position. | | V _{NO} | Maximum Structural Cruising Speed is the speed that should not be exceeded except in smooth air, then only with caution. | | V_{NE} | Never Exceed Speed is the speed limit that may not be exceeded at any time. | | V _S | Stalling Speed or the minimum steady flight speed is the minimum speed at which the airplane is controllable. | | V_{SO} | Stalling Speed or the minimum steady flight speed is the minimum speed at which the airplane is controllable in the landing configuration at the most | forward center of gravity. Best Angle-of-Climb Speed is the speed which results in the greatest gain of altitude in a given horizontal distance. Best Rate-of-Climb Speed is the speed which results in the greatest gain in altitude in a given time. V_X ٧v #### METEOROLOGICAL TERMINOLOGY OAT Outside Air Temperature is the free air static temperature. It may be expressed in either degrees Celsius or degrees Fahrenheit. Standard Standard Temperature is 15°C at sea level Temperature pressure altitude and decreases by 2°C for each 1000 feet of altitude. Pressure **Pressure Altitude** is the altitude read from an Altitude altimeter when the altimeter's barometric scale has been set to 29.92 inches of mercury (1013 mb). #### **ENGINE POWER TERMINOLOGY** BHP Brake Horsepower is the power developed by the engine. RPM **Revolutions Per Minute** is engine speed. Static **Static RPM** is engine speed attained during a full RPM throttle engine runup when the airplane is on the ground and stationary. MAP Manifold Absolute Pressure is the absolute pressure measured in the engine induction system. MAP is measured in units of inches of mercury (inHG). Lean Decreased proportion of fuel in the fuel-air mixture Mixture supplied to the engine. As air density decreases, the amount of fuel required by the engine decreases for a given throttle setting. Adjusting the fuel-air mixture to provide a smaller portion of fuel is known as "leaning" the mixture. Rich Increased proportion of fuel in the fuel-air mixture Mixture supplied to the engine. As air density increases, the amount of fuel required by the engine increases for a given throttle setting. Adjusting the fuel-air mixture to provide a greater portion of fuel is known as "richening" the mixture. Full Rich Mixture control full forward (pushed in, full control travel, toward the panel). Idle Cutoff Mixture control full aft (pulled out, full control travel, away from the panel). Revision 8 1-9 #### **ENGINE POWER TERMINOLOGY** (Continued) Full Throttle full forward (pushed in, full control travel, Throttle toward the panel) Also known as "full open" throttle. Throttle full aft (pulled out, full control travel, away Closed from the panel). Also known as the throttle "idle" Throttle position. #### AIRPLANE PERFORMANCE AND FLIGHT PLANNING **TERMINOLOGY** **Demonstrated Crosswind Velocity** is the velocity Demonof the crosswind component for which adequate strated control of the airplane during takeoff and landing Crosswind was actually demonstrated during certification tests. Velocity The value shown is not considered to be limiting. Usable Fuel **Usable Fuel** is the fuel available for flight planning. Unusable Unusable Fuel is the quantity of fuel that can not be Fuel safely used in flight. **GPH** Gallons Per Hour is the amount of fuel consumed per hour. Nautical Miles Per Gallon is the distance which can be expected per gallon of fuel consumed at a specific fliaht enaine power settina and/or configuration. g is acceleration due to gravity. g Course Datum is the compass reference used by Course the autopilot, along with course deviation, to provide Datum lateral control when tracking a navigation signal. **NMPG** #### WEIGHT AND BALANCE TERMINOLOGY Reference Datum is an imaginary vertical plane from which all horizontal distances are measured for balance purposes. Station Station is a location along the airplane fuselage given in terms of the distance from the reference datum. Arm is the horizontal distance from the reference datum to the center of gravity (C.G.) of an item. Moment is the product of the weight of an item multiplied by its arm. (Moment divided by the constant 1000 is used in this handbook to simplify balance calculations by reducing the number of digits.) Center of Gravity is the point at which an airplane, or equipment, would balance if suspended. Its distance from the reference datum is found by dividing the total moment by the total weight of the airplane. Revision 7 1-11 #### WEIGHT AND BALANCE TERMINOLOGY (Continued) Center of Gravity Arm is the arm obtained by C.G. Arm adding the airplane's individual moments and dividing the sum by the total weight. C.G. Center of Gravity Limits are the extreme center of I imits gravity locations within which the airplane must be operated at a given weight. Standard Standard Empty Weight is the weight of a standard airplane, including unusable fuel, full operating fluids **Empty** Weight and full engine oil. Basic Empty Weight is the standard empty weight Basic Empty plus the weight of optional equipment. Weight Useful Load Useful Load is the difference between ramp weight and the basic empty weight. MAC MAC (Mean Aerodynamic Chord) is the chord of an imaginary rectangular airfoil having the same pitching moments throughout the flight range as that of the actual wing. Maximum Maximum Ramp Weight is the maximum weight approved for ground maneuver, and includes the Ramp weight of fuel used for start, taxi and runup. Weight Maximum Takeoff Weight **Maximum Takeoff Weight** is the maximum weight approved for the start of the takeoff roll. Maximum Landing Weight **Maximum Landing Weight** is the maximum weight approved for the landing touchdown. Tare Tare is the weight of chocks, blocks, stands, etc. used when weighing an airplane, and is included in the scale readings. Tare is deducted from the scale reading to obtain the actual (net) airplane weight. #### METRIC / IMPERIAL / U.S. CONVERSION CHARTS The following charts have been provided to help international operators convert U.S. measurement supplied with the Pilot's Operating Handbook into metric and imperial measurements. The standard followed for measurement units shown, is the National Institute of Standards Technology (NIST), Publication 811, "Guide for the Use of the International System of Units (SI)." Please refer to the following pages for these charts. Revision 4 1-13 (Kilograms \times 2.205 = Pounds) (Pounds \times .454 = Kilograms) #### **KILOGRAMS INTO POUNDS** KILOGRAMMES EN LIVRES | kg | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | lb. | 0 | | 2.205 | 4.409 | 6.614 | 8.819 | 11.023 | 13.228 | 15.432 | 17.637 | 19.842 | | 10 | 22.046 | 24.251 | 26.456 | 28.660 | 30.865 | 33.069 | 35.274 | 37.479 | 39.683 | 41.888 | | 20 | 44.093 | 46.297 | 48.502 | 50.706 | 52.911 | 55.116 | 57.320 | 59.525 | 61.729 | 63.934 | | 30 | 66.139 | 68.343 | 70.548 | 72.753 | 74.957 | 77.162 | 79.366 | 81.571 | 83.776 | 85.980 | | 40 | 88.185 | 90.390 | 92.594 | 94.799 | 97.003 | 99.208 | 101.41 | 103.62 | 105.82 | 108.03 | | | | | | | | | | | | | | 50 | 110.23 | 112.44 | 114.64 | 116.85 | 119.05 | 121.25 | 123.46 | 125.66 | 127.87 | 130.07 | | 60 | 132.28 | 134.48 | 136.69 | 138.89 | 141.10 | 143.30 | 145.51 | 147.71 | 149.91 | 152.12 | | 70 | 154.32 | 156.53 | 158.73 | 160.94 | 163.14 | 165.35 | 167.55 | 169.76 | 171.96 | 174.17 | | 80 | 176.37 | 178.57 | 180.78 | 182.98 | 185.19 | 187.39 | 189.60 | 191.80 | 194.01 | 196.21 | | 90 | 198.42 | 200.62 | 202.83 | 205.03 | 207.24 | 209.44 | 211.64 | 213.85 | 216.05 | 218.26 | | | | | | | | | | | | | | 100 | 220.46 | 222.67 | 224.87 | 227.08 | 229.28 | 231.49 | 233.69 | 235.90 | 238.10 | 240.30 | #### **POUNDS INTO KILOGRAMS** LIVRES EN KILOGRAMMES | lb. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | kg | 0 | | 0.454 | 0.907 | 1.361 | 1.814 | 2.268 | 2.722 | 3.175 | 3.629 | 4.082 | | 10 | 4.536 | 4.990 | 5.443 | 5.897 | 6.350 | 6.804 | 7.257 | 7.711 | 8.165 | 8.618 | | 20 | 9.072 | 9.525 | 9.979 | 10.433 | 10.886 | 11.340 | 11.793 | 12.247 | 12.701 | 13.154 | | 30 | 13.608 | 14.061 | 14.515 | 14.969 | 15.422 | 15.876 | 16.329 | 16.783 | 17.237 | 17.690 | | 40 | 18.144 | 18.597 | 19.051 | 19.504 | 19.958 | 20.412 | 20.865 | 21.319 | 21.772 | 22.226 | | | | | | | | | | | | | | 50 | 22.680 | 23.133 | 23.587 | 24.040 | 24.494 | 24.948 | 25.401 | 25.855 | 26.303 | 26.762 | | 60 | 27.216 | 27.669 | 28.123 | 28.576 | 29.030 | 29.484 | 29.937 | 30.391 | 30.844 | 31.298 | | 70 | 31.752 | 32.205 | 32.659 | 33.112 | 33.566 | 34.019 | 34.473 | 34.927 | 35.380 | 35.834 | | 80 | 36.287 | 36.741 | 37.195 | 37.648 | 38.102 | 38.555 | 39.009 | 39.463 | 39.916 | 40.370 | | 90 | 40.823 | 41.277 | 41.731 | 42.184 | 42.638 | 43.091 | 43.545 | 43.999 | 44.452 | 44.906 | | | | | | | | | | | | | | 100 | 45.359 | 45.813 | 46.266 | 46.720 | 47.174 | 47.627 | 48.081 | 48.534 | 48.988 | 49.442 | Figure 1-2. Weight Conversions (Sheet 1 of 2) (Kilograms \times 2.205 = Pounds) - (Pounds \times .454 = Kilograms) Weight Conversions (Sheet 2 of 2) Figure 1-2. Feb 28/97 1-15 0585T1027 (Meters \times 3.281 = Feet) (Feet \times .305 = Meters) #### METERS INTO FEET METERES EN PIEDS | m | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | feet | 0 | | 3.281 | 6.562 | 9.842 | 13.123 | 16.404 | 19.685 | 22.956 | 26.247 | 29.528 | | 10 | 32.808 | 36.089 | 39.370 | 42.651 | 45.932 | 49.212 | 52.493 | 55.774 | 59.055 | 62.336 | | 20 | 65.617 | 68.897 | 72.178 | 75.459 | 78.740 | 82.021 | 85.302 | 88.582 | 91.863 | 95.144 | | 30 | 98.425 | 101.71 | 104.99 | 108.27 | 111.55 | 114.83 | 118.11 | 121.39 | 124.67 | 127.95 | | 40 | 131.23 | 134.51 | 137.79 | 141.08 | 144.36 | 147.64 | 150.92 | 154.20 | 157.48 | 160.76 | | | | | | | | | | | | | | 50 | 164.04 | 167.32 | 170.60 | 173.86 | 177.16 | 180.45 | 183.73 | 187.01 | 190.29 | 193.57 | | 60 | 195.85 | 200.13 | 203.41 | 206.69 | 209.97 | 213.25 | 216.53 | 219.82 | 223.10 | 226.38 | | 70 | 229.66 | 232.94 | 236.22 | 239.50 | 242.78 | 246.06 | 249.34 | 252.62 | 255.90 | 259.19 | | 80 | 262.47 | 265.75 | 269.03 | 272.31 | 275.59 | 278.87 | 282.15 | 285.43 | 288.71 | 291.58 | | 90 | 295.27 | 298.56 | 301.84 | 305.12 | 308.40 | 311.68 | 314.96 | 318.24 | 321.52 | 324.80 | | | | | | | | | | | | | | 100 | 328.08 | 331.36 | 334.64 | 337.93 | 341.21 | 344.49 | 347.77 | 351.05 | 354.33 | 357.61 | ## FEET INTO METERS PIEDS EN METRES | ft | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | m | m | m | m | m | m | m | m | m | m | | 0 | | 0.305 | 0.610 | 0.914 | 1.219 | 1.524 | 1.829 | 2.134 | 2.438 | 2.743 | | 10 | 3.048 | 3.353 | 3.658 | 3.962 | 4.267 | 4.572 | 4.877 | 5.182 | 5.486 | 5.791 | | 20 | 6.096 | 6.401 | 6.706 | 7.010 | 7.315 | 7.620 | 7.925 | 8.230 | 8.534 | 8.839 | | 30 | 9.144 | 9.449 | 9.754 | 10.058 | 10.363 | 10.668 | 10.973 | 11.278 | 11.582 | 11.887 | | 40 | 12.192 | 12.497 | 12.802 | 13.106 | 13.411 | 13.716 | 14.021 | 14.326 | 14.630 | 14.935 | | | | | | | | | | | | | | 50 | 15.240 | 15.545 | 15.850 | 16.154 | 16.459 | 16.754 | 17.069 | 17.374 | 17.678 | 17.983 | | 60 | 18.288 | 18.593 | 18.898 | 19.202 | 19.507 | 19.812 | 20.117 | 20.422 | 20.726 | 21.031 | | 70 | 21.336 | 21.641 | 21.946 | 22.250 | 22.555 | 22.860 | 23.165 | 23.470 | 23.774 | 24.079 | | 80 | 24.384 | 24.689 | 24.994 | 25.298 | 25.603 | 25.908 | 26.213 | 26.518 | 26.822 | 27.127 | | 90 | 27.432 | 27.737 | 28.042 | 28.346 | 28.651 | 28.956 | 29.261 | 29.566 | 29.870 | 30.175 | | | | | | | | | | | | | | 100 | 30.480 | 30.785 | 31.090 | 31.394 | 31.699 | 32.004 | 32.309 | 32.614 | 32.918 | 33.223 | Figure 1-3. Length Conversions (Sheet 1 of 2) $(Meters \times 3.281 = Feet)$ $(Feet \times .305 = Meters)$ Units \times 10, 100, etc. Figure 1-3. Length Conversions (Sheet 2) (Centimeters \times .394 = Inches) (Inches \times 2.54 = Centimeters) ### CENTIMETERS INTO INCHES CENTIMETRES EN POUCES | cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | in. | 0 | | 0.394 | 0.787 | 1.181 | 1.575 | 1.969 | 2.362 | 2.756 | 3.150 | 3.543 | | 10 | 3.937 | 4.331 | 4.724 | 5.118 | 5.512 | 5.906 | 6.299 | 6.693 | 7.087 | 7.480 | | 20 | 7.874 | 8.268 | 8.661 | 9.055 | 9.449 | 9.843 | 10.236 | 10.630 | 11.024 | 11.417 | | 30 | 11.811 | 12.205 | 12.598 | 12.992 | 13.386 | 13.780 | 14.173 | 14.567 | 14.961 | 15.354 | | 40 | 15.748 | 16.142 | 16.535 | 16.929 | 17.323 | 17.717 | 18.110 | 18.504 | 18.898 | 19.291 | | | | | | | | | | | | | | 50 | 19.685 | 20.079 | 20.472 | 20.866 | 21.260 | 21.654 | 22.047 | 22.441 | 22.835 | 23.228 | | 60 | 23.622 | 24.016 | 24.409 | 24.803 | 25.197 | 25.591 | 25.984 | 26.378 | 26.772 | 27.164 | | 70 | 27.559 | 27.953 | 28.346 | 28.740 | 29.134 | 29.528 | 29.921 | 30.315 | 30.709 | 31.102 | | 80 | 31.496 | 31.890 | 32.283 | 32.677 | 33.071 | 33.465 | 33.858 | 34.252 | 34.646 | 35.039 | | 90 | 35.433 | 35.827 | 36.220 | 36.614 | 37.008 | 37.402 | 37.795 | 38.189 | 38.583 | 38.976 | | | | | | | | | | | | | | 100 | 39.370 | 39.764 | 40.157 | 40.551 | 40.945 | 41.339 | 41.732 | 42.126 | 42.520 | 42.913 | ## INCHES INTO CENTIMETERS POUCES EN CENTIMETRES | in. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | cm | 0 | | 2.54 | 5.08 | 7.62 | 10.16 | 12.70 | 15.24 | 17.78 | 20.32 | 22.96 | | 10 | 25.40 | 27.94 | 30.48 | 33.02 | 35.56 | 38.10 | 40.64 | 43.18 | 45.72 | 48.26 | | 20 | 50.80 | 53.34 | 55.88 | 58.42 | 60.96 | 63.50 | 66.04 | 68.58 | 71.12 | 73.66 | | 30 | 76.20 | 78.74 | 81.28 | 83.82 | 86.36 | 88.90 | 91.44 | 93.98 | 96.52 | 99.06 | | 40 | 101.60 | 104.14 | 106.68 | 109.22 | 111.76 | 114.30 | 116.84 | 119.38 | 121.92 | 124.46 | | | | | | | | | | | | | | 50 | 127.00 | 129.54 | 132.08 | 134.62 | 137.16 | 139.70 | 142.24 | 144.78 | 147.32 | 149.86 | | 60 | 152.40 | 154.94 | 157.48 | 160.02 | 162.56 | 165.10 | 167.64 | 170.18 | 172.72 | 175.26 | | 70 | 177.80 | 180.34 | 182.88 | 185.42 | 187.96 | 190.50 | 193.04 | 195.58 | 198.12 | 200.66 | | 80 | 203.20 | 205.74 | 208.28 | 210.82 | 213.36 | 215.90 | 218.44 | 220.98 | 223.52 | 226.06 | | 90 | 228.60 | 231.14 | 233.68 | 236.22 | 238.76 | 241.30 | 243.84 | 246.38 | 248.92 | 251.46 | | | | | | | | | | | | | | 100 | 254.00 | 256.54 | 259.08 | 261.62 | 264.16 | 266.70 | 269.24 | 271.78 | 274.32 | 276.86 | Figure 1-4. Length Conversions (Sheet 1 of 2) 1-18 Revision 4 (Centimeters \times .394 = Inches) (Inches \times 2.54 = Centimeters) Figure 1-4. Length Conversions (Sheet 2) Revision 7 1-19 (Statute Miles ×1.609=Kilometers) (Kilometers ×.622=Statute Miles) (Statute Miles ×.869=Nautical Miles) (Nautical Miles ×1.15=Statute Miles) (Nautical Miles ×1.852=Kilometers) (Kilometers ×.54=Nautical Miles) Figure 1-5. Distance Conversions (Imperial Gallons \times 4.546 = Liters) (Liters \times .22 = Imperial Gallons) ## LITERS INTO IMPERIAL GALLONS LITRES EN GALLONS IMPERIAL | Lt | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | IG | 0 | | 0.220 | 0.440 | 0.660 | 0.880 | 1.100 | 1.320 | 1.540 | 1.760 | 1.980 | | 10 | 2.200 | 2.420 | 2.640 | 2.860 | 3.080 | 3.300 | 3.520 | 3.740 | 3.960 | 4.180 | | 20 | 4.400 | 4.620 | 4.840 | 5.059 | 5.279 | 5.499 | 5.719 | 5.939 | 6.159 | 6.379 | | 30 | 6.599 | 6.819 | 7.039 | 7.259 | 7.479 | 7.699 | 7.919 | 8.139 | 8.359 | 8.579 | | 40 | 8.799 | 9.019 | 9.239 | 9.459 | 9.679 | 9.899 | 10.119 | 10.339 | 10.559 | 10.779 | | | | | | | | | | | | | | 50 | 10.999 | 11.219 | 11.439 | 11.659 | 11.879 | 12.099 | 12.319 | 12.539 | 12.759 | 12.979 | | 60 | 13.199 | 13.419 | 13.639 | 13.859 | 14.078 | 14.298 | 14.518 | 14.738 | 14.958 | 15.178 | | 70 | 15.398 | 15.618 | 15.838 | 16.058 | 16.278 | 16.498 | 16.718 | 16.938 | 17.158 | 17.378 | | 80 | 17.598 | 17.818 | 18.038 | 18.258 | 18.478 | 18.698 | 18.918 | 19.138 | 19.358 | 19.578 | | 90 | 19.798 | 20.018 | 20.238 | 20.458 | 20.678 | 20.898 | 21.118 | 21.338 | 21.558 | 21.778 | | | | | | | | | | | | | | 100 | 21.998 | 22.218 | 22.438 | 22.658 | 22.878 | 23.098 | 23.318 | 23.537 | 23.757 | 23.977 | ## IMPERIAL GALLONS INTO LITERS GALLONS IMPERIAL EN LITRES | IG | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | Lt | 0 | | 4.546 | 9.092 | 13.638 | 18.184 | 22.730 | 27.276 | 31.822 | 36.368 | 40.914 | | 10 | 45.460 | 50.006 | 54.552 | 59.097 | 63.643 | 68.189 | 72.735 | 77.281 | 81.827 | 86.373 | | 20 | 90.919 | 95.465 | 100.01 | 104.56 | 109.10 | 113.65 | 118.20 | 122.74 | 127.29 | 131.83 | | 30 | 136.38 | 140.93 | 145.47 | 150.02 | 154.56 | 159.11 | 163.66 | 168.20 | 172.75 | 177.29 | | 40 | 181.84 | 186.38 | 190.93 | 195.48 | 200.02 | 204.57 | 209.11 | 213.66 | 218.21 | 222.75 | | | | | | | | | | | | | | 50 | 227.30 | 231.84 | 236.39 | 240.94 | 245.48 | 250.03 | 254.57 | 259.12 | 263.67 | 268.21 | | 60 | 272.76 | 277.30 | 281.85 | 286.40 | 290.94 | 295.49 | 300.03 | 304.58 | 309.13 | 313.67 | | 70 | 318.22 | 322.76 | 327.31 | 331.86 | 336.40 | 340.95 | 345.49 | 350.04 | 354.59 | 359.13 | | 80 | 363.68 | 368.22 | 372.77 | 377.32 | 381.86 | 386.41 | 390.95 | 395.50 | 400.04 | 404.59 | | 90 | 409.14 | 413.68 | 418.23 | 422.77 | 427.32 | 431.87 | 436.41 | 440.96 | 445.50 | 450.05 | | | | | | | | | | | | | | 100 | 454.60 | 459.14 | 463.69 | 468.23 | 472.78 | 477.33 | 481.87 | 486.42 | 490.96 | 495.51 | Figure 1-6. Volume Conversions (Sheet 1 of 3) Feb 28/00 1-21 Figure 1-6. Volume Conversions (Sheet 2 of 3) Units \times 10, 100, etc. 0585T1032 Figure 1-6. Volume Conversions (Sheet 3 of 3) Feb 28/00 1-23 #### TEMPERATURE CONVERSIONS Figure 1-7. Temperature Conversions 0585T1034 ## PRESSURE CONVERSION HECTOPASCALS (MILLIBARS) TO INCHES MERCURY (inHG) Figure 1-8. Hectopascals to Inches Mercury Revision 7 1-25 0585T1030 Figure 1-9. Volume to Weight Conversion Figure 1-10. Quick Conversions